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Physical properties of the microenvironment influence penetration
of drugs into tumors. Here, we develop a mathematical model to
predict the outcomeof chemotherapy based on the physical laws of
diffusion. The most important parameters in the model are the
volume fraction occupied by tumor blood vessels and their average
diameter. Drug delivery to cells, and kill thereof, are mediated by
these microenvironmental properties and affected by the diffusion
penetration distance after extravasation. To calculate parameter
values we fit the model to histopathology measurements of the
fraction of tumor killed after chemotherapy in human patientswith
colorectal cancer metastatic to liver (coefficient of determination
R2= 0.94). To validate themodel in a different tumor type,we input
patient-specific model parameter values from glioblastoma; the
model successfully predicts extent of tumor kill after chemotherapy
(R2 = 0.7–0.91). Toward prospective clinical translation, we calcu-
late blood volume fraction parameter values from in vivo contrast-
enhanced computed tomography imaging from a separate cohort
of patients with colorectal cancer metastatic to liver, and demon-
strate accurate model predictions of individual patient responses
(average relative error = 15%). Here, patient-specific data from ei-
ther in vivo imaging or histopathology drives output of themodel’s
formulas. Values obtained from standard clinical diagnostic mea-
surements for each individual are entered into the model, produc-
ing accurate predictions of tumor kill after chemotherapy. Clinical
translation will enable the rational design of individualized treat-
ment strategies such as amount, frequency, and delivery platform
of drug and the need for ancillary non–drug-based treatment.

colorectal cancer liver metastasis | glioblastoma multiforme histopathology |
contrast CT | patient drug response | mathematical modeling

Predicting the effects of chemotherapeutic drugs on tumor be-
havior in patients is vital to advancing knowledge in the fight

against cancer. Computational methods of “mathematical pa-
thology” developed through quantitative analysis of human tumor
tissue have the potential to provide predictions of treatment
outcomes in the clinical setting (1). Here, we develop our model
using colorectal cancer (CRC) metastatic to liver from one cohort
of patients as an example of intratumor perfusion properties. We
then assess the general applicability of our model to predict re-
sponse in other tumor types, that is, glioblastoma multiforme
(GBM).We prospectively apply our model in vivo to a third cohort
of subjects with metastatic CRC to liver using pretreatment con-
trast-enhanced computed tomography (CT) scans followed by cor-
relation histopathology after treatment and surgical excision.
CRC metastatic to liver can be treated by surgical resection in

the majority of cases. Metastases too large or numerous for pri-
mary excision are first treated with chemotherapy and then excised
if possible, because chemotherapy alone is rarely curative (2, 3).
This strategy works, but in only 30% of cases (4, 5). In other tumor
types, such as GBM, outcomes are even worse. Thus, there is a
pressing need for a deeper understanding of the mechanisms un-
derlying the failure of chemotherapy. Conventional therapeutic

drugs delivered intravenously, and therefore nonspecific in their
distribution and targeting, result in comparable toxicity to normal
cells, thus limiting dosage (6). To be effective, chemotherapeutic
agents must travel through the blood vessels, extravasate into the
interstitium, and diffuse through the tumor mass (7–9). Research
testing drugs on cultured cells in monolayers fails to account for
these physiological and biological aspects of drug delivery (10).
Here we demonstrate that the most significant parameters for
effective drug delivery are the fraction of blood volume within the
tumor, the distribution of tumor vessel diameters, and the dis-
tance that drugs diffuse through tumor tissue. These parameter
values differ among tumor types, and even in different individuals
with similar tumor types, and thus cannot be predicted a priori but
need to be measured on an individual basis.
Our model begins with a differential equation based on math-

ematical descriptions of diffusion and its parameters. From his-
topathological specimens we obtain a biophysical description of
the vascular/tissue architecture upon which to formulate our
mathematical model of drug perfusion within the tumor mass. We
assume that the “kill zone” around viable tumor represents dif-
fusion penetration distance. Using regression analysis, we ret-
rospectively compare the model to the direct measurement of
the size of the kill zone for each specimen and assess the bi-
ological relevance of the model formula and fitted parameter
values. We then apply the model against primary tumors arising
in tissue with vasculature different from that of the liver (i.e.,
patient samples of GBM biopsied after chemotherapy). GBM is
the most malignant primary brain tumor and secretes high levels
of vascular endothelial growth factor, inducing vascular pro-
liferation. Despite its vascular density, GBM is highly resistant to
chemotherapy and antiangiogenic therapies (11). Comparison of
postchemotherapy biopsies of GBM with our model addresses
questions of how tissue architecture and vascular distribution
influence chemotherapeutic delivery in addition to validating the
generality of our modeling approach. To demonstrate the power
of our model for prospective clinical application, we test model
predictions of cell kill based on parameters measured from
pretreatment contrast-enhanced CT scans. The novelty of our
approach is that individual patient data drive model predictions,
through built-in variables, whose values are determined for each
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patient from standard clinical diagnostic tests. This introduces
mechanistic, predictive modeling into personalized medicine.

Methods
The process to predict patient response to chemotherapy (Fig. 1) begins with
model development, from equations based on the first principles of physics
that describe diffusion within the tumor and organ tissue, and assumptions
that define the spatial domain of tissue and tumor in which the equations
apply (Fig. 2).

Assumptions About Tissue Architecture and Drug Diffusion. Metastasizing cells
from CRC are carried via the portal vein from the intestine to seed the liver,
where they may implant and grow. Systemic chemotherapy also enters the
liver parenchyma from the portal triad (Fig. 2A). Barriers to drug delivery
within the tumors include their own induced vasculature and microenvi-
ronment. We model the movement of drug molecules through the sinu-
soidal system as a percolation described by an effective diffusion coefficient.
For GBM, we assume a relatively isotropic distribution of blood vessels and
effective drug diffusivity (Fig. 2B).

Here, thediffusionofdrugmolecules ismodeledtofollowextravasationfrom
a single straight cylindrical source of large aspect ratio: rb � h (Figs. 1 and 2B).
For the unique case of the liver, this idealized source encompasses the entire
portal triad (Fig. 2A), whereas for the brain this source is a single blood vessel
(Fig. 2B). Diffusion and cellular uptake within the surrounding cylindrical vol-
ume of tumor tissue (Fig. 2B, red dashed lines) are modeled assuming that the
distances between the sources (i.e., portal triads in liver or vessels in brain) are
significantly larger than the diffusion penetration distance L (H � L; H = 0.5
mm for the liver, Fig. 2A). Within a metastatic liver tumor the vasculature is
different from that of adjacent healthy liver. In the liver both normal vessels
and sinusoids, while in metastasis tumor vessels, are sources of drug.

Mathematical Modeling of Tumor Kill. The model variables and parameters are
defined in Fig. 1; see SI Text for details and formulas. Local drug concen-
tration within the tumor is calculated by solving an equation that describes
the diffusion and uptake of drug by tumor cells after extravasation. The
fraction of tumor cells killed depends on this local concentration within the
tumor and on the effectiveness of the drug at that concentration (e.g., as
measured in a monolayer assay in vitro). Therefore, the fraction of tumor kill
fkill is computed here by averaging this drug effectiveness over the cylin-
drical volume surrounding the source (Fig. 2B, dashed lines). This approach
enables the model to account for both the pharmacokinetics–pharmacody-
namics of drug cytotoxicity as well as drug penetration heterogeneity across
the tumor tissue. The fraction fkill, in the presence of a concentration σ0 of

Fig. 1. Process diagram of model development and application (Left). Definitions of variables (Right).

Fig. 2. Definition of tissue domain where the model equations are solved.
(A) Hexagonal, cylindrical microscopic structure of liver. (B) Liver: idealized
cylindrical portal triad; brain: an individual blood vessel segment between
bifurcations. rb and h: radius and length of drug source, of large aspect ratio
(2 · rb � h); rk: “kill radius,” that is, thickness of dead tumor region. The dif-
fusion penetration distance L is assumed to determine rk and is calculated
using Eq. 3; the blood volume fraction BVF is calculated from the measure-
ments of cross-sectional areas of the sources (Fig. 1 and Methods).
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drug in the blood, and the corresponding kill radius rk are obtained as the
unique solutions of the following equations:

fkill = fMkillðσ0Þ ·BVF ·
2Lrb ·K1ðrb=LÞ− 2Lrk ·K1ðrk=LÞ−

�
r2k − r2b

�
·K0ðrk=LÞ

r2b · ðK0ðrb=LÞ−K0ðrk=LÞÞ
; [1a]

σk
σ0

=
K0ðrk=LÞ
K0ðrb=LÞ

: [1b]

K0 and K1 are modified Bessel functions of the second kind of orders 0 and 1,
respectively (12). (Drug dosing and timing will affect the local value of drug
concentration in tumor and surrounding tissue at any time during treat-
ment. Because this information is currently unavailable from clinical tests,
we replace this time-fluctuation with an equivalent, effective time-averaged
value of drug concentration in the blood σ0.)

Histopathology Measurements. H&E-stained microscopic slides of randomly
selected human liver specimens removed from 10 patients and GBM speci-
mens from a second cohort of 8 patients, all after chemotherapy, were
obtained from Rhode Island Hospital pathology service, University of New
Mexico Human Tissue Repository, and Cooperative Human Tissue Network
(CHTN), a National Cancer Institute-supported human tissue repository at six
different academic medical centers, according to Brown University and
Rhode Island Hospital, University of New Mexico (UNM) and CHTN in-
stitutional review board human subject approvals. Eight liver specimens
showed well-differentiated metastatic colorectal adenocarcinoma with
minimal inflammatory component. Twowere eliminated as failing tomeet this
criterion: one had mucinous, poorly differentiated cancer and the other intense
inflammatory patterns. Four GBM specimens were large enough to be usable.
Automated imaging of each entire specimen was performed with bright-field
illumination with an Acroplan 4× objective on a fully mechanized Zeiss Axio-
scope ZO1 running Axiovision 4.8 with Mosaic software and captured on a Zeiss
Axiocam HR digital camera. Images were transferred to Photoshop for analysis
and figure preparation. Similar procedures were used on a third cohort of
specimens from 21 patients at the MD Anderson Cancer Center (MDACC). Six
were not included in the analysis because blood vessels were not visible in the
H&E-stained sections or in one case because the specimen was not large
enough and thus relevant parameters could not be measured.

The fraction of tumor killed was directly measured as the fraction of tumor
area killed from the histopathology images, by assuming that the histologic
sections are isotropic. Fig. 3B, bottom, shows an illustration of the meas-
urements, manually performed using GNU Image Manipulation Program
(GIMP) (13), of the thickness of area occupied by dead tumor (the kill radius
in red lines), from a representative histopathology specimen (Fig. 3A). To
calculate the fraction of dead tumor area, the dead areas of tumor were
colored red while the live areas of tumor were colored blue (Fig. 3C). Por-
tions that were not tumor were colored green. The fraction of dead tumor
area was set as:

fkill =# of red pixels=ð# of red pixels+# of blue pixelsÞ: [2]

Areasof tissue exhibitingfibrosiswere included, because chemotherapyhas been
directly shown to induce fibrosis in liver (14, 15). Owing to the large size of each
histopathologic image, measurements of rk and fkill were made for up to 12
evenly subdivided images (of size >L) to obtain a statistically meaningful en-
semble for measurements of mean and SD, for each of the liver and brain
samples, to generate the results in Figs. 4–7. The highest and lowest outliers that
were >2 SDs from the mean were removed before the analysis in Fig. 4. The
accuracy of the image segmentation procedure was verified by comparison of
the distribution of fkill values from the histopathology of the third cohort of
patients (MDACC),measuredusing theGNU ImageManipulation Programby the
UNM group, with those directly assessed by the pathologist (Fig. S1 and SI Text).

Regression and Statistical Analyses. Herein, P values obtained from data fit-
ting using a model (i.e., linear regression, Eq. 1a, or Eq. 3) indicated that the
null hypothesis that the model parameters are not significant should be
rejected. The same P values were obtained using both Mathematica (16) and
the software Prism in Graphpad (17). Least-squares fitting (18) of Eq. 1a was
performed using Mathematica routine “NonlinearModelFit” (16) to the kill
fraction and kill radii measured in liver metastasis in the CHTN patient co-
hort. This resulted in estimates of parameters blood volume fraction (BVF),
rb, and L, which produced the best fit. An independent two-sided, two-
sample Student t test resulted in P = 0.46, indicating differences between
the data obtained from histopathology and output of the mathematical
model were not significant (i.e., P > 0.05). Following this up with an equiva-
lence test further demonstrated that the two groups were equivalent, with
>95% confidence, and that the sample size was sufficient (SI Text).

Test of Model Predictivity. Eqs. 1a and 1b can be combined to eliminate σk
and rk, and thus obtain the (maximum) predicted fkill for each patient as
a function solely of parameters rb, BVF, and diffusion penetration distance L,
all of which can be directly measured from histopathology or imaging:

fkill = 2 ·BVF · L ·

ffiffiffiffiffiffiffiffiffi
BVF

p
·K1ðrb=LÞ−K1

�
rb=

�
L ·

ffiffiffiffiffiffiffiffiffi
BVF

p ��

ffiffiffiffiffiffiffiffiffi
BVF

p
· rb ·K0ðrb=LÞ · ð1−BVFÞ ; [3]

where integration was practically executed up to a distance that scales with
the intersource distance ∝ rb=

ffiffiffiffiffiffiffiffiffi
BVF

p
(SI Text). [The fraction of cells killed in

the absence of diffusion gradients was assumed to be fMkillðσ0Þ= 1. We as-
sumed that the amount of drug in the vasculature would be sufficient to kill
all cells in vitro. Therefore, this parameter is omitted herein.] Here Eq. 3 was
tested on the MDACC cohort of patients with CRC metastatic to liver by
using the same input parameter values for rb and L obtained from the re-
gression analysis of the CHTN cohort. A graph was generated by comparing
the predictions of Eq. 3 to the direct measurements of kill (Fig. 7A).

Fig. 3. Example of measurements from histopathological specimens. (A) Histologic section from the first cohort showing the entire slide. (B) Example of
portal triad and central vein (Upper) and of measurements of the kill radii rk (red lines) around tumor nodules (Lower). (C) Segmentation of A for calculation
of the fraction of dead tumor area (Eq. 2): dead tumor (red); live tumor (blue); no tumor (green); portal triad and central vein (yellow).
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Model Validation in a Different Tumor Type. Model parameters rb and BVF
were directly measured from each GBM patient brain specimen together
with the fraction of tumor killed, to solve Eq. 3 directly for the diffusion
penetration distance L, thus fully constraining the model without fitting. A
graph was then generated by entering these parameter values into Eq. 1a
and comparing the resultant output produced by the calculations to the
direct measurements of kill in each patient (Fig. 6; also see Fig. S2).

Prospective Application of the Model Based on Pretreatment CT Scans. Con-
trast CT scans performed according to standard clinical protocols (19) were
acquired before chemotherapy on 11 patients at MDACC according to
institutional review board-approved protocols. The simple average of three
Hounsfield unit (HU) measurements in representative areas within the entire
tumorwas calculated at each phase of the test for each patient (Fig. 7B, Inset),
that is, a late arterial phase (30–35 s after start of contrast injection), a portal
venous phase (50–55 s), and a delay phase (minutes, variable timing).

The pretreatment CT measurements (HU) at the arterial phase were found
by linear regression analysis to correlate to the measurements of BVF (blood
volume fraction) performed from posttreatment histology (SI Text and Fig. S3):

BVF= 0:00088 ·CT ðHUÞ; [4]

with coefficient of determination R2 = 0.67 (20), P = 0.004, from Mathematica
routine “LinearModelFit” (16) and GraphPad Prism (17). CTmeasurement error
of 25% was estimated from corresponding data of contrast enhancement in
the aorta, and thus represents variability in physiology and contrast dosing in
CT protocol across patients. Even with a limited number of subjects, the sta-
tistical significance (P = 0.004) is expected because CT measurements reflect
perfusion of tissue, which relies on the volume fraction of blood vessels.
Analysis using the portal–venous measurements produced similar results. Eq. 4
(with SD from the assessed CT measurement error) was used as input into Eq. 3
to generate a graph with model predictions of cell kill (with SD) for each
patient and compared with the direct measurements from histopathology
(Fig. 7B). The average relative error between the model prediction fkill(P) and
the measured kill value fkill(M) was calculated as ÆjðfkillðPÞ− fkillðMÞÞ=fkillðMÞjæ.

Results
We pursued a three-step process to develop our mathematical
model, obtain parameter values, apply the model to different
tumor types, and then investigate the clinical relevance in pro-
spective studies (Fig. 1). The first step involved building a math-
ematical equation based on diffusion incorporating a number of
variables whose values were determined from histopathology and
imaging data from individual patients. The boundary conditions
of liver anatomy needed to solve the diffusion equation are il-
lustrated in Fig. 2. For the case of the liver, the parameters rb
(equivalent radii of liver portals) and L (drug diffusion penetration
distance) could be quantified from a regression analysis of all pa-
tient data (step 1). The parameter BVF was found to be the most
sensitive and critical. Once these parameter values are determined
for each individual patient, the mathematical model produces pa-
tient-specific predictions of the fraction of cells killed by chemo-
therapy. Model validation in a different tumor type, GBM,
followed (step 2), and then led to its prospective application
based on pretreatment measurements of BVF by contrast-
enhanced CT scans (step 3 as diagrammed in Fig. 1).

Fitting the Mathematical Model to Patient Data by a Regression Analysis
Identifies Biologically Realistic Parameter Values. Fraction of tumor
killed fkill and thickness of dead tumor regions rk were measured in
histopathological sections of metastastic CRC in liver after che-
motherapy from the first cohort of patients (Fig. 3). Output from
Eq. 1a was directly fit by regression analysis to these tumor
measurements (Fig. 4). This analysis demonstrated agreement of
the functional form of Eq. 1a with the distribution of patient data
(Fig. 4; note the red curve approximation with symbols for patient
data). We also applied a three-step statistical analysis to test the
difference or equivalence of the distribution of our model pre-
dictions with our data, and that sample size of our data were large
enough to have confidence in the results. This analysis found no
statistically significant difference between the model predictions
and the data [P = 0.46 in student t test (17)], but rather established
that the data were equivalent (95% confidence interval) and that
the sample size was adequate (SI Text).
The regression analysis resulted in estimates of the three

parameters: rb, L, and BVF (Fig. 4, Inset). Each of these esti-
mated values is consistent with measurements from human
anatomy. The radius of portal vessels, rb ≈ 88 μm, is consistent
with the combined radii of hepatic artery and portal vein within
portal triads in normal liver (21) and with those in our histopa-
thology of these specimens (Fig. 3A and B). The value of BVF =

Fig. 4. Fitting the model to patient data demonstrates biological accuracy
of the functional form of Eq. 1a. Symbols: measurements from 49 histology
images of CRC metastatic to liver in the first cohort of patients (Methods),
with SDs (six measurements per tumor nodule). Dashed line, quadratic least-
square fit; red line, least-square fit of Eq. 1a to the data (coefficient of de-
termination R2 = 0.92; R2 = 0.94 between the two curves). (Inset) Parameter
values obtained from fit.

Fig. 5. Measurements from GBM histopathology. (A) Example with mea-
surements (red) of kill radius rk in an H&E-stained section of GBM biopsied
after chemotherapy. (B) Example of a different GBM showing measurements
of vessel diameters (lines across vessels) for calculation of the cross-sectional
area and vessel-to-tissue fraction BVF. Such areas provide an underestimate
of BVF because the smaller vessels not containing red blood cells are not
visualized or counted.
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0.25 obtained from the fit of the first cohort of patients (Fig. 4,
Inset) is consistent with the range of values measured from all
patient liver specimens in our third cohort, that is, BVF ≈ 0.01
−0.5 (Fig. 7A). [The blood volume fraction estimated by calcu-
lating the ratio between the portal vessels, i.e., structure con-
taining blood, and lobule volumes assuming a hexagon of side
length H = 0.5 mm (Fig. 2A), BVF∝ 4π=ð3 · ffiffiffi

3
p Þ · ðrb=HÞ2, is val-

idated from histopathology measurements (SI Text and Fig. S4).]
The diffusion penetration length from regression analysis is L = 191
μm. The latter result is corroborated by a simple scaling argument
estimating L∼ rb=

ffiffiffiffiffiffiffiffiffiffi
BVF

p
, proportional to the interportal distance,

which, using the values of rb and BVF from the fit, would give L =
186 μm. The model’s R2 was 0.92 with the raw data and 0.94 with
the simple parabolic fit 5:03 · 10−6 · r2k + 6 · 10−4 · rk + 3:6 · 10−3

(Fig. 4). Using Mathematica (16), statistically significant P values
were obtained for all parameters (Fig. 4, Inset), except for L (P =
0.28). This suggests that the parameter L should be less variable
from patient to patient, at least for the case of CRC metastatic to
liver. We demonstrated above that the value of L obtained from
this fit is consistent with that calculated from the histopathology
measurements of rb and BVF.
Additional testing of our model was performed by revisiting in

vitro experiments on MCF-7 breast cancer cell lines (9), in which
the measured ratio fkill=fMkill of cells killed in 3D tumor spheroids
in the presence of diffusion gradients of doxorubicin to cells killed
in monolayers with no diffusion gradients was 0.3, comparable to
the average fraction of kill fkill = 0.36 calculated by averaging all
measurements reported in Fig. 4.

Validation of the Model in a Different Tumor Type. We compared
predictions of patient-specific cell kill from Eq. 1a to the direct
measurements from histopathology of GBM from a cohort of
patients biopsied after chemotherapy (Fig. 5). In these specimens
distinct large blood vessels were apparent that also allowed for
measurements of blood vessel radii, rb (Fig. 5B), and BVF. Thus,
Eq. 1a was fully informed from direct measurements (Fig. 6). De-
spite the heterogeneity of parameter values across different indi-
viduals (Fig. 5, Inset and Fig. S5, Insets), the model provided case-
specific predictions of fraction of tumor killed, fkill, in each patient
with a high degree of accuracy (R2 = 0.91; Fig. S5 shows three
additional cases, where R2 = 0.89, 0.86, and 0.74). The diffusion
penetration distance L for brain tumors, calculated by solving Eq. 3
(Methods), was found to be smaller than for tumors in liver, which
may be because the sinusoidal system in liver leads to better
transport of the drug throughout the normal liver parenchyma
surrounding the tumor nodules. Consistently, the fraction of tumor
killed is lower for GBM, despite its vascular proliferation, possibly
owing to less effective kill or lower rate of extravasation from thick-
walled vessels found in GBM. These results demonstrate the gen-
eral applicability of our approach, as well as the model’s predictive
power and translational value in different cancers.

Prospective Application of the Mathematical Model in Vivo.Next, we
proceeded to apply the model in a clinical setting. We obtained a
larger cohort of patients with CRC metastatic to liver (MDACC),

Fig. 6. Validating the model in GBM. Patient-specific predictions of Eq. 1a
(dotted line) vs. direct measurement of fraction of tumor kill fkill (and kill ra-
dius rk) from histopathology of biopsies after chemotherapy for one patient
(symbols with SDs; seven images, 79 measurements total). (Inset) Input
parameters BVF and rb measured from histopathology. Parameter L was cal-
culated using Eq. 3 from the measurements of the other parameters (Meth-
ods). See SI Text for similar results from three additional patients (Fig. S5).

Fig. 7. Prospective, patient-specific model predictions match outcomes of fraction fkill of cells killed by chemotherapy in a third cohort of patients with CRC
metastatic to liver. (A) Testing of Eq. 3 from posttreatment histopathology (red, coefficient of determination R2 = 0.79). (B) Predictions of Eq. 3 using the BVF
parameter calculated (Eq. 4) from pretreatment contrast-enhanced CT scan measurements (open circles, average relative error ∼15% between prediction and
actual). Multiple measurements per patient are indicated by the same symbol (A) and SD (B, filled circles). Model input parameters rb (radii of liver portals) and
L (drug diffusion penetration distance) from Fig. 4. (B, Inset) Examples of (Left) late arterial phase and (Right) portal–venous phase from contrast CT scans of
a 2.4-cm hypodense CRC metastasis in the left anterior hepatic lobe (red circles indicate example of area used for measurement).
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where pretreatment contrast CT scans were performed, followed
by chemotherapy and surgical excision. To establish whether our
model could predict chemotherapy outcome based only on stan-
dard pretreatment contrast CT imaging, we carried out the fol-
lowing series of steps. First we performed an analysis on the
histopathology from posttreatment specimens similar to that
described for the GBM. This again validated the predictive power
of Eq. 3 specifically for this third cohort of patients (Fig. 7A, red
curve: R2 = 0.79). Because here we used the same value of dif-
fusion penetration distance L and portal radius rb obtained from
the fit of the first cohort (Fig. 4), these results again point to
uniformity of these parameters across patients, thus generating
the hypothesis that future clinical translation would primarily rely
on patient-specific calculation of the parameter BVF. To test this
hypothesis we calculated a linear correlation constant for histo-
pathology BVF and contrast CT Hounsfield units, which allowed
us to obtain a BVF value from the contrast enhancement of the
CT images for each individual (Eq. 4). Inputting this value into
Eq. 3 produced accurate kill-ratio predictions (Fig. 7B, open
circles) that compared well to the actual measurements from
histopathology posttreatment (Fig. 7B, filled circles), with an
average relative error of the predicted fraction killed of ∼15%
(Methods).

Discussion
We provide a mechanistic approach towards understanding the
relationship between drug perfusion and tumor death. Through an
analysis of patient histopathology specimens of CRC metastatic to
liver and of GBM, we show that our model successfully predicts
virtually the entire range of patient responses (4% < fkill < 90%).
We illustrate the model’s potential for prospective application in
the clinic by predicting cell kill in additional patients with CRC
metastatic to liver based on input data obtained from contrast-
enhanced CT scans before treatment. Our predictive, prospective
model is generally applicable across tumor types and is valid for
both CT imaging and histopathology, is applicable to immuno-
therapy (22) as well as other types of chemotherapy, and also likely
to be useful beyond the context of cancer in any case where drug
delivery relies on local perfusion properties.
We demonstrate that physical processes significantly influence

complete eradication of solid tumors via conventional chemo-
therapy as currently administered, because tumor kill induced by
passively transported drug molecules is limited by the survival of
tumor cells within the diffusion length L. Together, the results

from this study provide insights into how cancer treatment fails.
Characteristics such as blood source radius and blood volume
fraction that are measurable in histopathological specimens, or
from imaging before chemotherapy, can be directly used in the
mathematical model to predict responses and to develop and
monitor patient-specific treatment strategies. Approaching clini-
cal oncology as an engineering problem will promote the design of
successive chemotherapy cycles based on the diffusivity within
individual tumors as determined by Eqs. 1 and 3. Such basic
knowledge of tumor’s physical properties will drive dosage and
timing and may contribute to discovery of novel delivery mech-
anisms (e.g., using drug nanocarriers that are rationally designed
to maximize cell kill while minimizing toxicity effects).
The strength of the model presented here is in the ability to

quantify chemotherapeutic response in CRC metastatic to liver
and in GBM based on parameter values that are readily mea-
surable in standard clinical tests. Application to some types of
solid tumors where vasculature is very heterogeneous or dense,
and fibrous tissue is present will require additional mathematical
formulations for diffusivity D and uptake rate of drug λ (SI Text)
as functions of the tumor microenvironment, such as its char-
acteristics as a heterogeneous viscous fluid model or its porosity
(23). Remarkably, only three parameters were necessary to
predict tumor kill fractions matching actual outcomes with 15%
average error. The focus of this study was on the drug effect
alone, based on histopathological samples of well-differentiated
disease, which provided clear distinction between liver and dead
tumor regions. The model presented here provides a mathemat-
ical framework upon which additional layers of formulation may
incorporate cellular heterogeneity in more poorly differentiated
tumors, hypoxia, fibrosis, and inflammation.
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